

Latest change: 15 August 2019 1

eDVS

The eDVS is a 128 x 128 DVS sensor interfaced with NXP
microcontroller on an embedded board

Specifications

DVS RESOLUTION 128 X 128 PIXELS
DVS DYNAMIC RANGE 120 dB
MIN. LATENCY ~ 12 us @ 1 klux with optimized biases
LENS MOUNT M12 x 0.5 mm
I/O 2 UART connectors up to 12 Mbps

(standard firmware 4 Mbps), 200/600
kEPS with/without timestamps, hardware
handshake
USB 2.0 FTDI serial up to 12 Mbps (shared
with UART0) SPI/SSI/Microwire (up to
25/50 Mbit half/full duplex)
6 PWM digital outputs (2.8 V)
4 PWM power outputs (2 motors)
6 analog inputs (2.8 V)
6 digital general purpose I/O (2.8 V) 1
microSD slot (32-bit FAT)

SOFTWARE DV-Platform, NXP IDE
POWER SOURCE USB Mini-B or external @ 5 VDC

Compatible with single cell LiPo battery
(re)charging through USB

DIMENSIONS L 80 x W 50
WEIGHT 23g (with lens)
HARDWARE MULTI-CAMERA
SYNC

Supported (Pinhead connector)

ON-BOARD COMPUTE 32-bit dual-core RM up to 204 MHz
Hardware FPU, 136 KB SRAM, 1MB program
/ data flash

IMU Yes
SPECIAL FEATURES Adjustable wake-up on visual activity

Hardware real-time clock
CMOS TECHNOLOGY 0.35 um 2P4M
CHIP SIZE 6 x 6.6 [mm]
PIXEL SIZE 40 x 40 [um]
ARRAY SIZE 5.12 x 5.12 [mm]
FILL FACTOR 8.1 %
PIXEL COMPLEXITY 26 transistors, 3 capacitors, 1 photodiode
CHIP VOLTAGES 3.3 V
CHIP POWER CONSUMPTION 23mW (activity dependent)

Specifications not guaranteed. All specifications subject to change without notice

Latest change: 15 August 2019 2

Board layout

Figure 1 eDVS fron layout

Back:

Figure 2 eDVS back layut

Latest change: 15 August 2019 3

Figure 3 eDVS board dimensions

Getting started
Viewing and processing events
The officially supported software to view and process events coming from the
eDVS is DV. Visit the inivation website to get the newest copy of DV.

Once installed, connect the eDVS via USB to your computer. The drivers for
USB serial port emulation are already part of all modern operating systems, so
no special installation is required at this point. The recently connected devices
should show up on your system as a serial communication device, for example
as a COM:<x> port on Windows or /dev/ttyUSB<x> on Linux. If your OS does not
find drivers, download FTDI’s latest VCP drivers for FT232HL
Note for Linux users: you may need to ensure you have the correct permissions
for accessing /dev/ttyUSBn (where n = 0,1,2, etc). For example, running the
following command as root:
chmod 666 /dev/ttyUSB0
Will give you access to device ttyUSB0.

Custom firmware development
To take advantage of the more advanced features offered by the eDVS4337
boards, you might need to tailor the standard firmware to your own
application’s needs. The latest version of the firmware can be checked out with
Git from:
https://gitlab.com/inivation/devices-bin/tree/master/firmware/eDVS4337
Please follow the instructions within that directories README.txt file to install
the LPCXpresso development environment.

Latest change: 15 August 2019 4

Firmware reprogramming
The post build steps of the LPCXpresso build script generate an Intel HEX file
for reprogramming through the UART0 port or the USB plug.
You can find already compiled HEX files at
https://gitlab.com/inivation/devices-bin/tree/master/firmware/eDVS4337/Releases

The latest hex files are EDVSBoardOS-4mbps.hex; EDVSBoardOS-6mbps.hex
and EDVSBoardOS-12mbps.hex. Choose the hex file denoted with the baud rate
you want. If the higher baud rates (6 mbps and 12 mbps) don’t work, you can
move down to the 4 mbps file.
To enter reprogramming mode, use the programming command from a serial
console:
P\n
Ensure you do not hit any other keys or send further characters after entering
reprogramming mode. Just close the terminal window.

Windows & MacOS X
For Windows and Mac OS X, the supported tool is FlashMagic.
The current version (9.51) runs on Windows XP/Vista/7/8 and version 8.50 on
MacOS X 10.6+. The following instruction were written for FlashMagic 7.85, but
still apply to newer version as well.

Step 1 - Communication
Device: LPC4337 Flash Bank: A Com Port: Serial port of the FTDI chip, depends
on system. Baud Rate: 115200 (try lower baud rates if connection fails;
e.g. 19200) Interface: None (ISP) Oscillator (MHz): 12

Step 2 - Erase
‘Erase all Flash’ should be ticked

Step 3 - Hex File
Select the Hex file provided or the one you generated. If you build the project
with LPCExpresso, take the HEX file in the M4/Release (or M4/Debug) folder.
The files in M4 contain the M0 code as well.

Step 4 - Options
‘Verify after programming’ and ‘Activate Flash Bank’ must be ticked.

Step 5 - Start
Click the ‘Start’ button

Step 6 - Waiting
Please stand by while new firmware is sent through the Serial Port to your
board.

Step 7 - Executing
After the programming and verification has ended, restart the device by simply
re-plugging the USB cable. Note: at the end of the process you might see a

Latest change: 15 August 2019 5

message “Operation Failed. (activating flash bank)”, this is normal, and the
programming has taken effect.
If you get the error message ‘Operation Failed. Failed to autobaud - step 1’ this
is likely because you haven’t entered programming mode as shown above.

Linux
Flash magic is not available for Linux; an open-source alternative is:
http://www.windscooting.com/softy/mxli.html#Latest
Further instructions on request (the process is similar to the above).

Recovering from faulty firmware
It is possible to create faulty firmware that isn’t able to correctly boot on the
microprocessor of the eDVS. If this firmware gets flashed to the device, it won’t
be able to start correctly and you won’t be able to simply reprogram it as
detailed above, since the whole infrastructure to enter programming mode via
USB isn’t available then.
To correct this, it’s possible to manually force the microprocessor to enter
programming mode directly, by shorting a specific pin to GND (ground). This pin
is P2_7, more information can be found in Section 6.2 “Pin description” of
the LPC4337 datasheet.
On the PCB, this pin is pulled up to VCC through a pull-up resistor by default,
as can be seen here:

The track highlighted in red on the under-side of the board is the pin in
question, and to pull it down you can simply short it momentarily with GND.
The following schematic extract shows also all the nearby GND pads:

Latest change: 15 August 2019 6

While the pin is shorted to GND, press the RESET button (blue button on both
sides of the board) and release it. If done correctly, the LED should stop
blinking. The controller will then start directly in programming mode, so you
can then use FlashMagic and the usual procedure to upload new, good
firmware.

Accessing the device manually
It is possible to manually access the eDVS and send commands to it directly.
This can be done by using any serial console emulation program and
connecting it to the device (such as “hyperterm” or “putty” on Windows OS or
“minicom” in Linux).
Here is an example using the popular Putty program on Windows, which can be
downloaded at
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html. Once you’ve
downloaded Putty, just run its executable. In the Session settings (top left),
change the Connection type to Serial and then write the correct COM port (in
our case COM3) into the Serial line textbox, and set the Speed to 4000000 for
devices with serial number 613xx or to 12000000 for devices with serial
numbers 126xx. Then switch to the Serial settings (bottom left) and verify that
they match what you just entered. Further, change Flow control to RTS/CTS (i.e.
enable hardware handshaking) and ensure Data bits is 8, Stop
bits is 1 and Parity is None (often referred to as 8N1). Then switch to
the Terminal settings (third from the top left), and tick Implicit CR in every LF,
as well as set to Force off both Local echo and Local line editing.
After pressing the Open button, you’ll be able to send commands to the device.
The list of commands is available in the next section.

UART Protocol (PC->Board)
Supported Commands (all commands need to be terminated by ‘\n’;
i.e. return):
E+/- - enable/disable event sending
!ER+/- - enable/disable event recording (SD card)
!Ex - specify event data format, ??E to show options see
below for more details)
!ETx - set current timestamp to x (default: 0)
!ETM+ - synch timestamp, master mode, output active
!ETM0 - synch timestamp, master mode, output stopped

Latest change: 15 August 2019 7

!ETS - synch timestamp, slave mode
!ETI - single retina, no external synch mode
!B[0-11]=x - set bias register to value
!BF - send bias settings to DVS (flush)
!BDx - select and flush predefined bias set x
?Bx - get bias register x current value
!L[0,1,2] - LED off/on/blinking
!U=x - set baud rate to x
!U[0,1,2] - UART echo mode (none, cmd-reply, all)
!S+b,p - enable sensors streaming, ??S to show options
!S-[b] - disable sensors streaming, ??S to show options
further explanation below)
?Sb - get sensor readouts according to bitmap b
??S - bitmap b options
R - reset board
P - enter reprogramming mode
!M+/- - enable/disable motor driver
?MC[0,1] - get motor PID controller gains
!MC[0,1]=p,i,d - set motor PID controller gains
!MP[0,1]=x - set motor PWM period in microseconds
!M[0,1]=[%]x - set motor duty width in microseconds [% 0..100]
!MV[0,1]=[0-100] - set motor velocity (internal P-controller for
PushBot)
!MD[0,1]=[%] - set motor duty width, slow decay [% 0..100]
!MVD[0,1]=x - set motor duty velocity, slow decay
!P[A,B,C]=x - set timer base period in microseconds
!P[A,B,C][0,1]=[%]x - set timer channel width in microseconds [% 0..100]
!T+/- - enable/disable Real Time Clock (RTC)
!Tyyyy-mm-dd hh:mm:ss - set RTC time
?T - get RTC time
?? - display help menu

Enabling / Disabling Data Streaming
Use the !S command to enable or disable data streaming. Format:
!Snb,p
where n = ‘-‘ disables streaming and n = ‘+’ enables streaming; p is the period
(in milliseconds) and b is a bitmask (see below). Example:
!S+10,8
will stream the ADC channel 0 and channel 2 (10=0b1010) readings at 125Hz
(8ms).
upcoming (example) reply:
-S1 1000\n
-S3 0250\n

List of available sensory data:

Bit Decimal Name # Description Format

0 1 BATTERY 1
battery
voltage (in
mVolt)

up to 4
digits
(0..9999)

Latest change: 15 August 2019 8

Bit Decimal Name # Description Format

1 2 ADC CHANNEL 0 1
raw ADC
reading from
pin 2

up to 4
digits
(0..1023)

2 4 ADC CHANNEL 1 1
raw ADC
reading from
pin 3

up to 4
digits
(0..1023)

3 8 ADC CHANNEL 2 1
raw ADC
reading from
pin 4

up to 4
digits
(0..1023)

4 16 ADC CHANNEL 3 1
raw ADC
reading from
pin 5

up to 4
digits
(0..1023)

5 32 ADC CHANNEL 4 1
raw ADC
reading from
pin 6

up to 4
digits
(0..1023)

6 64 ADC CHANNEL 5 1
raw ADC
reading from
pin 7

up to 4
digits
(0..1023)

7 128 RAW GYRO 3

raw
gyroscope
data (3 axes)
(+/- 2000º/s)

+/- up to 5
digits (+/-
32767)

8 256 RAW ACC 3

raw
acceleromet
er data (3
axes) (+/- 2g)

+/- up to 5
digits (+/-
32767)

9 512 RAW COMP 3

raw
magnetic
values (3
axes) (+/-
1229 uT)

+/- up to 4
digits (+/-
4095)

Latest change: 15 August 2019 9

Bit Decimal Name # Description Format

10 1024 CAL GYRO 3
calibrated
gyroscope
data in dps

up to 8
hexadecima
l digits (Q16)

11 2048 CAL ACC 3
calibrated
acceleromet
er data in g’s

up to 8
hexadecima
l digits (Q16)

12 4096 CAL COMP 3

calibrated
magnetic
values in
microtesla

up to 8
hexadecima
l digits (Q16)

13 8192 QUARTERNION 4 9 axis
quarternion

up to 8
hexadecima
l digits (Q30)

14 16384 EULER ANGLES 4 Euler angles
in degrees

up to 8
hexadecima
l digits (Q30)

15 32768 ROTATION
MATRIX 9 rotation

matrix

up to 8
hexadecima
l digits (Q30)

16 65536 HEADING 1 heading in
degrees

up to 8
hexadecima
l digits (Q16)

17 131072 LINEAR ACC 3
linear
acceleration
in m/s^2

up to 8
hexadecima
l digits
(Float)

18 262144 IMU STATUS 2

IMU status:
temperature
in milliC,
time in
milliSec

+/- up to 5
digits
(+/99999)an
d (+/- 31
bits)

19 524288 PWM_SIGNALS 4 currently set
PWM duty

+/- up to 3
digits (+/-

Latest change: 15 August 2019 10

Bit Decimal Name # Description Format

cycles (in uS
and %)

1000000
and +/-100)

20 1048576 MOTOR_CURREN
TS 2

motor
currents
from the
motor driver
(in mA)

up to 4
digits
(0..9999)

21 2097152 EVENT_RATE 1
event rate
(events per
second)

up to 7
digits
(0..1000000)

28 26843545
6

MOTOR_SENSOR
S 2

wheel tick
counter (only
present in
PushBot)

+/- up to 11
digits(+/- 31
bits)

Custom application sensors should use bits 28 - 31; bits 22 - 27 are reserved
for future applications.

Event recording formats
Streaming
You can specify the following formats for data streaming:
!E0 - 2 bytes per event, binary: 1yyyyyyy.pxxxxxxx (default) (p = polarity)
!E1 - 3-6 bytes per event; the above address format followed by 1-4 bytes
delta-timestamp (7 bits each)
!E2 - 4 bytes per event (as !E0 followed by 16 bit absolute timestamp)
!E3 - 5 bytes per event (as !E0 followed by 24 bit absolute timestamp)
!E4 - 6 bytes per event (as !E0 followed by 32 bit absolute timestamp)
Every timestamp has 1 us resolution.
Examples:

Format Data packet

!E0 will
result in
data packets

1yyyyyyy.pxxxxxxx

!E1 will result
in data
packets

1yyyyyyy.pxxxxxxx.1ttttttt
(time stamp wrap-around after 2^7 us = 128 us)
1yyyyyyy.pxxxxxxx.0ttttttt.1ttttttt
(time stamp wrap-around after 2^14 us = 16 384 =~ 16 ms)

Latest change: 15 August 2019 11

Format Data packet

1yyyyyyy.pxxxxxxx.0ttttttt.0ttttttt.1ttttttt
(time stamp wrap-around after 2^21 us = 2 097 152 us =~ 2
sec)
1yyyyyyy.pxxxxxxx.0ttttttt.0ttttttt.0ttttttt.1ttttttt
(time stamp wrap-around after 2^28 us = 268 435 456 us
=~ 4.5 min)

!E2 will
result in
data
packets:

1yyyyyyy.pxxxxxxx.tttttttt.tttttttt
(time stamp wrap-around after 2^16 us = 65 535 us =~
65ms)

!E3 will
result in
data
packets:

1yyyyyyy.pxxxxxxx.tttttttt.tttttttt.tttttttt
(time stamp wrap-around after 2^24 = 16 777 216 us =~ 16
sec)

!E3 will
result in
data
packets:

1yyyyyyy.pxxxxxxx.tttttttt.tttttttt.tttttttt.tttttttt
(time stamp wrap-around after 2^24 = 4 294 967 296 us =~
72 min)

Recording
For event recording on SD-card, the format is always as !E1 above, i.e.
1yyyyyyy.pxxxxxxx (p = polarity), followed by 1-4 bytes delta-timestamp (7 bits
each); this size depends on how much time has passed (see table below):

Time Data packet

< 128us: 1yyyyyyy.pxxxxxxx.1ttttttt

< 16384 us: 1yyyyyyy.pxxxxxxx.0ttttttt.1ttttttt

< 2097152 us: 1yyyyyyy.pxxxxxxx.0ttttttt.0ttttttt.1ttttttt

else 1yyyyyyy.pxxxxxxx.0ttttttt.0ttttttt.0ttttttt.1ttttttt

(a leading 1 in a time stamp byte indicates the final byte of time-stamp)

Connectors
The input voltage available in the connectors is the one present before the
voltage regulator for the board. Most pins available have secondary functions
that can be used if needed.
I2C is available in the PWM outputs connector.

Latest change: 15 August 2019 12

GPIO
Pin Primary Function Secondary Function(s)

1 Supply Voltage

2 GPIO2[5] PWM Channel A 2

3 GPIO2[6] PWM Channel A 2

4 GPIO2[2] PWM Channel C 0

5 GPIO5[12] Timer2 Capture 2

6 GPIO5[13] Timer3 Capture 1

7 GPIO5[14] Timer0 Capture 2

8 GND

ADC

Pin Function

1 Analog Supply

2 ADC 0

3 ADC 1

4 ADC 2

5 ADC 3

6 ADC 4

7 ADC 5

8 Analog GND

Latest change: 15 August 2019 13

PWM Outputs
Pin Primary Function Secondary Function(s)

1 Supply Voltage

2 PWM Channel A 0 TWI SDA GPIO5[3]

3 PWM Channel A 1 TWI SCK GPIO5[4]

4 PWM Channel B 0 GPIO5[15]

5 PWM Channel B 1 GPIO5[16]

6 PWM Channel C 0 GPIO5[7]

7 PWM Channel C 1 GPIO1[10]

8 GND

SPI

Pin Primary Function Secondary Function(s)

1 Supply Voltage

2 MOSI GPIO0[9]

3 MISO GPIO0[8]

4 SCK

5 SSEL GPIO0[4]

6 GND

UART0 (Slave)
Pin Primary Function Secondary Function(s)

1 Supply Voltage

Latest change: 15 August 2019 14

Pin Primary Function Secondary Function(s)

2 RXD GPIO5[1]

3 TXD GPIO5[0]

4 GND

5 CTS GPIO1[8]

6 RTS GPIO0[10]

UART is already set up in the default firmware. The UART0 port can be
accessed from outside and it supports exactly the same command structure
that USB supports, since the USB connection is in the end provided by an FTDI
chip connected to UART0. This means you can get events from it easily.

UART1 (Master)

Pin Primary Function Secondary Function(s)

1 Supply Voltage

2 TXD GPIO1[14]

3 RXD GPIO1[7]

4 GND

5 RTS GPIO2[11]

6 CTS GPIO2[133]

